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I formulate and answer some questions concerning maximal structures of 
'determinate' quantum propositions, i.e., maximal structures of propositions that 
can be taken as having definite (but perhaps unknown) truth values for a given 
quantum state. The basic constraint on such structures is the Kochen and Specker 
'no-go' hidden-variables theorem, which demonstrates that no value assignment 
to certain finite sets of observables can preserve the functional relations between 
commuting observables. The problem I want to consider is how large we can take 
the set of determinate observables without violating the functional relationship 
constraint. I show how to construct maximal determinate sublattices of quantum 
propositions that are unique, subject to certain constraints, and I comment on the 
relevance of this 'go' theorem for the interpretation of quantum mechanics. 

The dynamica l  variables  of  a c lass ical  mechanica l  sys tem form a commu-  
tat ive algebra,  and the subalgebra  o f  idempotent  dynamica l  v a r i a b l e s - - t h e  
two-va lued  variables represent ing the poss ib le  outcomes o f  y e s - n o  exper i -  
ments  on the system, or  the truth values of  proposi t ions  of  the s y s t e m - - f o r m  
a Boolean  algebra.  Classical  states select  ultrafil ters in this Boolean  algebra,  
i.e., max imal  sets of  proposi t ions  that are s imul taneous ly  true of  the system, 
or  maximal  sets of  propert ies  that are s imul taneous ly  de terminate  for  the 
sys tem (generated by the ass ignment  of  a de terminate  value to every  dynami-  
cal  variable) .  

The dynamica l  var iables  o f  a quantum mechanica l  sys tem form a non- 
commuta t ive  algebra,  and the subalgebra  of  idempotents ,  represented  by  the 
projec t ion  operators  on the Hi lber t  space o f  the system, form a non-Boolean  
algebra.  The quantum state is unders tood as def ining probabi l i t ies  on this 
non-Boolean  a lgebra  of  y e s - n o  exper iments ,  or  proposi t ions ,  or  propert ies  
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of the system. Since there are no quantum states that are dispersion free 
for all dynamical variables, no quantum state assigns a determinate value 
simultaneously to every dynamical variable. The dynamical variables are 
referred to as 'observables,' and the probability defined by the quantum state 
for a range of values of an observable is interpreted, minimally, as the 
probability of finding the value of the observable in the range on measurement 
(or, equivalently, the probability of finding the value 'yes' for the correspond- 
ing yes-no measurement, or the probability that the corresponding proposition 
will be found to be true of the system on measurement). 

The problem of the completeness of quantum mechanics, or the problem 
of 'hidden variables,' has always concerned the question of whether it is 
possible to define states that assign determinate values simultaneously to all 
the observables of a quantum mechanical system, in such a way that the 
probabilities defined by quantum states can be recovered as measures over 
the different possible sets of value assignments. Various 'no-go' theorems 
show that such states are impossible if the value assignments are required 
to satisfy certain constraints. 

The constraint imposed by the Kochen and Specker theorem (Kochen 
and Specker, 1967) requires that the values assigned to a set of mutually 
commuting observables should preserve the functional relations satisfied by 
these observables. With sums and products defined for mutually commuting 
observables only, the observables of a quantum mechanical system form a 
partial algebra, and the idempotent observables or projection operators form 
a partial Boolean algebra. Kochen and Specker show that a necessary condi- 
tion for the simultaneous assignment of values to all the observables of a 
quantum mechanical system satisfying the functional relationship constraint 
is that, for every pair of distinct projection operators a, b in the partial 
Boolean algebra, there exists a homomorphism h onto the 2-element Boolean 
algebra such that h(a) 4: h(b). 

The Kochen and Specker proof proceeds by showing that there are 
no 2-valued homomorphisms on the partial Boolean algebra of projection 
operators on a Hilbert space of three or more dimensions. The homomorphism 
condition requires that for every orthogonal triple of 1-dimensional projection 
operators or corresponding rays in //3, one projection operator or ray is 
mapped onto 1 ('true') and the remaining two projection operators or rays 
are mapped onto 0 ('false'). This is shown to be impossible for the finite set 
of orthogonal triples of rays that can be constructed from 117 appropriately 
chosen rays in//3: any assignment of l 's and O's to this set of orthogonal 
triples satisfying the homomorphism condition involves a contradiction. 

Hidden-variables theories that satisfy the Kochen and Specker constraint 
are termed 'noncontextual.' A nonmaximal (degenerate) observable A might 
commute with B and also with C, while B and C fail to commute. For 
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example, A and B could form a complete commuting set (in which case both 
A and B are functions of a maximal or nondegenerate observable X), and A 
and C could form an incompatible complete commuting set (in which case 
A and C are functions of a maximal observable Y not commuting with X). 
The functional relationship constraint forces the hidden variables to assign 
the same value to A, whether A is considered as part of the complete commut- 
ing set or measurement context (A, B), and hence a function of X, or as part 
of the complete commuting set or measurement context (A, C), and hence a 
function of Y 

Bell (1966) argued that the general requirement of noncontextuality 
cannot be justified on physical grounds, but pointed out that a special case 
of noncontextuality is physically plausible. If A refers to an observable of a 
subsystem S of a system S + S', and B and C refer to possibly noncommuting 
observables of a subsystem S' spacelike separated from S, then the requirement 
of noncontextuality, that the value of A in the context of B should be the 
same as the value of A in the context of C, becomes a locality condition. 
Bell's (1964) 'no-go' theorem shows that a general version of this locality 
condition cannot be satisfied. 

Several authors have considered the problem of constructing the smallest 
set of observables that cannot be assigned values in such a way as to satisfy 
the noncontextuality or locality constraint. Kochen and Conway [see Mermin 
(1993)] have reduced the number of directions in / /3  required to generate a 
contradiction from value assignments satisfying the Kochen and Specker 
homomorphism condition from 117 to 31, and Peres (1991) has found a more 
symmetrical proof with 33 rays. Peres (1991) has reduced the number of 
rays to 24 in/-/4, and Kernaghan (1994) has shown how to reduce this to 20 
rays. Mermin (1993) proves a version of the Kochen and Specker theorem 
for nine observables in a Hilbert space of four or more dimensions, and a 
version of Bell's theorem for ten observables in a Hilbert space of eight or 
more dimensions. 

The problem of how small we can make the set of observables and still 
generate a Kochen-Specker contradiction is interesting mathematically and 
important in revealing structural features of Hilbert space, but of no immediate 
significance for the interpretation of quantum mechanical probabilities. The 
problem I wish to consider here is in a sense the converse of this problem: How 
large can we take the set of observables without generating a Kochen-Specker 
contradiction, i.e., what are the maximal sets of observables that can be taken 
as having determinate (but perhaps unknown) values for a given quantum 
state? (By the remarks in the previous section, any hidden-variables theory 
satisfying the Kochen and Specker constraint will necessarily satisfy the 
locality condition.) 
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More precisely, if we consider the propositions of a quantum mechanical 
system as a lattice L (isomorphic to the lattice of projection operators or 
corresponding Hilbert space subspaces of the system), we know that we 
cannot assign truth values to all the propositions in L in such a way as to 
satisfy the Kochen and Specker constraint. That is, we cannot take all the 
propositions in L as determinately true or false if truth values are assigned 
subject to this constraint. So the probabilities defined by the quantum state 
cannot be interpreted epistemically and represented as measures over the 
different possible truth value assignments to all the propositions in L. We 
also know that any single observable can be taken as determinate for any 
quantum state (since the propositions associated with an observable generate 
a Boolean algebra), so we may suppose that fixing a quantum state represented 
by a ray e(+) in H and an arbitrary observable R places restrictions on what 
propositions can be taken as determinate for e in addition to R-propositions. 

Identifying all such maximal determinate sets of propositions or associ- 
ated observables amounts, in effect, to a 'go' theorem for hidden variables, 
specifically a hidden-variables theory in which the value of a privileged 
determinate observable R plays the role of a hidden variable that, together 
with the quantum state, assigns truth values to the propositions in a maximal 
determinate sublattice D(e, R) of L selected by R and the quantum state (or, 
equivalently, assigns values to a maximal determinate subset of observables 
of the system selected by R and the quantum state, not to all observables). 
The probabilities specified by the quantum state would then be interpreted 
as measures over the different possible truth value assignments to the proposi- 
tions in D(e, R) (a sublattice that changes as the quantum state evolves 
dynamically), not to all propositions in L. 

One might suppose that the maximal determinate sublattices D(e, R) are 
simply maximal Boolean sublattices of L associated with the different maxi- 
mal observables R. But this is not the case. It can be shown that, for any 
quantum state represented by a ray e in an n-dimensional Hilbert space H 
and any observable R, the unique choice for D(e, R), subject to certain 
constraints (see below), is the sublattice 

LerLer2...er k {eri, i 1 . . . . .  k} 

the commutant in L of {eri, i =  1 . . . . .  k}, where the k rays eri = 
(e v r{) A r; are the nonzero projections of the quantum state e onto the m 

--< n eigenspaces ri of  R (k ---< m). 
I use the same symbol ri here for eigenvalues of R and the associated 

eigenspaces. The symbol { }' indicates the commutant in L of { }, the 
set of all operators that commute with the projectors in { }. The symbol a 
represents the orthocomplement. My previous proposal for a type of 'modal' 
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interpretation (Bub, 1992a, b) was, in effect, to take D(e, R) as ~{eri, 
r - eri}', where the intersection is taken over  the k nonzero projections of  
e onto the m eigenspaces  of  R. [See Cassinelli  and Lahti (1994) for a formal  
characterization of  different versions of  the modal  interpretation.] Evidently, 
f h { e r i ,  r - -  eri}' C_ {err e = 1 . . . . .  k} ' ,  because ( '~{eri ,  r - -  % } '  C (-~{eri  , H 
- er/}' and n{e~ i, H - erl}' = {e~ i, e = 1 . . . . .  k} ' .  

The sublattice Le~e~2..er k of  L is generated by the atoms e~ i, i = 1 . . . . .  

k, and the atoms represented by all the rays in the subspace ( e r j  V e~ 2 v . . .  
e~) • orthogonal  to the s ubspace spanned by the err Since the e~ are orthogonal,  
they are compat ib le  and generate a Boolean sublattice of  L. So 

(e~l v e~2 v . . .  erk)  • = (erl) • A (er2) l A . . .  (erk) • 

It follows that 

Lerler2. . .er  k ~- t e r  I f-'l L e t  2 f h  . . .  Le r  k 

because each L,rr i = 1 . . . . .  k, is generated by the ray e~ i and all the rays 

in the subspaces (er~) • orthogonal to e~ r The set o f  maximal  observables  
associated with Lerler2...er k includes any maximal  observable  with k e igenvec-  

tors in the directions er~, i = 1 . . . . .  k. The full set of  observables  associated 
w i t h  Lerter2...e~ k includes any observable whose  eigenspaces are spanned by 

rays i n  Lerle~ ...er k. 

I originally imposed  two basic constraints on the sublattices D(e, R) 
(see Bub, 1994): 

(1) ~ Truth condition. Truth values can be assigned to all the proposit ions 
of  D(e, R), where each assignment  of  truth values is defined by a 2-valued 
map on D(e, R) that reduces to a 2-valued h o m o m o r p h i s m  on each Boolean 
sublattice of  D(e, R). 

(2) ~ Probability condition. The probabili t ies defined by e on the proposi-  
tions of  D(e, R) can be represented as measures  over  the d i f ferent  possible 
truth value ass ignments  to D(e, R), i.e., as measures  on a Ko lmogorov  proba-  
bility space (X, F, ix), where  X is the set of  truth-value maps  on D(e, R), as 
defined in (i), and tx({h: h(a) = 1 }) = tr(ea) for any proposit ion a e 
D(e, R). Here tr(ea), the trace of  ea, is the probabil i ty assigned by the quantum 
state e to the proposi t ion represented by the subspace a, and I~({h: h(a) = 
1 }) is the measure  of  the set o f  truth-value maps  assigning the value 1 (i.e., 
true) to a. 

I characterized the maximal  determinate sublattices D(e, R) as the maxi-  
mal sublattices of  L satisfying the conditions (1) ~ and (2) ~ together with the 
following four conditions: 
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(3) ~ Eigenstate condition. If e is an eigenstate of R, then D(e, R) contains 
the proposition e (the proposition represented by the 1-dimensional sub- 
space e). 

(4) ~ Impossibility condition. If a ~ D(e, R) and a -< e • then b E 
D(e, R) if b -< a. 

(5) ~ Refinement condition. If R is a refinement of R # (so that the eigen- 
spaces of R # are either the same as the eigenspaces of R or spans--  
suprema--of  some of the eigenspaces of R), and the possible atoms 2 of D(e #, 
R#), for any states e #, are a proper subset of the possible atoms of D(e, R), 
then D(e, R) C D(e #, R#), for all such states e #. 

(6) ~ Measurement condition. If the unit vector in the ray representing 
the quantum state takes the form of a polar decomposition ~, cic~i | Pi with 
respect to eigenvectors ai of some observable A and eigenvectors r i of the 
observable R, so that A-propositions become correlated with R-propositions 
in the quantum state, then D(e, R) includes the Boolean algebra of A-proposi- 
tions (i.e., all propositions represented by the eigenspaces of A). 

Note that modal interpretations that exploit the polar decomposition 
theorem (e.g., Kochen, 1985; Dieks, 1994; Healey, 1989) appeal to the exis- 
tence of a unique decomposition of the form ~ di[3i | % in terms of the 
eigenvectors of some observables B and T, when the coefficients IdiL are 
all distinct. The measurement condition here requires only that observables 
correlated with R, when the state takes the polar form for R, are determinate. 

It now follows from the eigenstate condition and the impossibility condi- 
tion that if R = I, the unit observable, then D(e, 1) D Le, where Le is the 
sublattice generated by the atom e and the atoms represented by all the rays 
in the subspace orthogonal to e. It can be shown that L~ is maximal if the 
Hilbert space H is more than 2-dimensional. [For a proof, see Bub (1994).] 
So, with the exception of the 2-dimensional case, D(e, 1) = L~. Note that H 
must be at least 4-dimensional to allow representations of the quantum state 
that can be interpreted as measurements. 

The refinement condition is motivated by the requirement that if R is a 
refinement of R #, then the transition from D(e, R) to D(e #, R #) should simply 
involve the transformation of some of the possible atomic propositions in 
D(e, R) to impossible atomic propositions in D(e #, R#), with the appropriate 
modification to the subspace of impossible propositions to conform to the 
impossibility condition. The latter condition requires that every ray in the 
subspace of impossible propositions in D(e #, R #) belongs to D(e #, R#), which 

2The impossible propositions are the propositions in D(e, R) assigned zero probability by the 
measure t x corresponding to e, and the possible propositions are the propositions in D(e, R) 
assigned nonzero probabilities by t x. 
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means that D(e #, R #) contains some impossible propositions that do not belong 
to D(e, R), and so D(e, R) C D(e #, R#). 

Since every observable can be regarded as a refinement of the unit 
observable I, the refinement condition entails the special refinement condition: 
D(e, R) C D(e #, I) if the possible atoms of D(e #, I), for any states e #, are a 
proper subset of the possible atoms of D(e, R). Since D(e #, I) = Le# for any 
e #, and contains only one possible atom represented by the ray e #, the special 
refinement condition requires that D(e, R) C Le# for any possible atom 
represented by a ray e # in D(e, R). 

In the case that the Hilbert space H is a tensor product space with the 
observable R associated with a factor space, and the vector representative of 
the quantum state e takes a polar form 2~ cioL i @ Pi, where the Pi are eigenvectors 
of R, the measurement condition together with the impossibility condition 
entails that D(e, R) contains elements corresponding to all the eigenspaces 
of any observable with k eigenvectors in the directions eri, where the eri are 
the nonzero projections of e onto the m eigenspaces of R. This follows because 
the measurement condition requires that D(e, R) contains the propositions 
associated with the eigenspaces of any observable A with k eigenvectors cq 
as well as R, and hence the propositions associated with the eigenspaces of 
an observable with k eigenvectors c~ i | Pi (the nonzero projections of ~ cio~ i 
@ Pi onto the eigenspaces of R) and n - k eigenvectors aj | Pk, J 4= k, 
corresponding to tensor products of A-eigenvectors and R-eigenvectors 
assigned zero probability by e (where n is the dimensionality of H). The 
impossibility condition requires in addition that all atomic propositions repre- 
sented by rays in the subspace spanned by the n - k vectors assigned zero 
probability by e are in D(e, R), which means that the propositions associated 
with all observables with eigenvectors coinciding on the k tensor products 
c~i | Pi of A-eigenvectors and R-eigenvectors assigned nonzero probability 
by the quantum state belong to D(e, R). 

On the orthodox interpretation of quantum mechanics, an observable 
has a determinate value if and only if the state e is an eigenstate of the 
observable. So the determinate propositions in the state e are the propositions 
assigned probability 1 or 0 by e, i.e., the sublattice of propositions p in the set 

{p: e --< p or e <-- p• 

This is the sublattice D(e, 1) = Le, i.e., the orthodox interpretation in effect 
takes the privileged observable as the unit observable I. 

The problem with the orthodox interpretation is that it leads to the 
measurement problem. Consider a model quantum mechanical universe con- 
sisting of a system S and a system M, which plays the role of a measuring 
instrument for observables of S. Let R represent the indicator or 'pointer' 
observable of M. A measurement interaction between S and M, say a unitary 
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transformation that correlates eigenstates ~i of an observable A of S with 
eigenstates Pi of R, results in a state represented by a unit vector of the form 

= "Zicioti | Pi (assuming initial pure states for S and M). Neither R- 
propositions nor A-propositions belong to the sublattice Le when e = e(t~). 
In order to avoid the problem, we have to assume the projection postulate, 
that unitary evolution is suspended in the case of a measurement interaction, 
and the state of S + M is projected onto the ray spanned by one of the unit 
vectors of. i @ 13 i with probability [cgl 2. 

Leqer2...er k can be characterized as the sublattice of propositions p in 

the set 3 

{p: eri ~ p or eri ----- p• i = 1 . . . . .  k} 

The projections of the ray e(t~) spanned by t~ onto the eigenspaces rg of R 
are the rays er i (+)  spanned by the unit vectors ~i (~ Pi" SO for this state, the 
determinate sublattice contains propositions represented by the projection 
operators ag | IM, where a i here represents the projection operator onto the 
subspace spanned by the unit vector c~i, i.e., propositions corresponding to 
the eigenvalues of A. It follows that the propositions corresponding to the 
observable correlated with the pointer observable in the 'entangled' state 
arising from a unitary transformation representing a quantum mechanical 
measurement interaction are determinately true or false. 

There are k Boolean homomorphisms on Le,.le~2...er k if the subspace 

(erl V e e  v . . .  erk) • is more than 2-dimensional, where the ith homomor- 
phism maps the proposition eri onto 1. If the subspace (erl v er2 v . . .  erk) • 
is less than 3-dimensional, there will also be Boolean homomorphisms that 
map this subspace onto 1 and each of the rays eri, i = 1 . . . . .  k ,  onto 0, but 
these Boolean homomorphisms will all be assigned zero measure by the 
measure m corresponding to e on the Kolmogorov probability space of Bool- 
ean homomorphisms on Lerler2...er k [since e is orthogonal to (erl  V er2 v . . .  

erk)•  TO generate the probabilities defined by e for the propositions in 
Ler~e~2...e,. k on the Kolmogorov probability space, the Boolean homomorphism 

(more precisely, the corresponding singleton subset) that maps eri onto 1 is 
assigned measure t r ( e r i ) ,  for i = 1 . . . . .  k. So, if we take the sublattice 
Ler.er2...~r~ as the determinate sublattice for the system S + M in the state e, 

the probabilities defined by a quantum state for the eigenvalues of an observ- 
able A can indeed be interpreted as 'the probabilities of finding the different 
possible eigenvalues of A in a measurement of A.' 

3This was pointed out by Rob Clifton (private communication). 
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At the August 1994 meeting of the International Quantum Structures 
Association in Prague, Rob Clifton proposed reformulating the 'truth condi- 
tion' on the sublattices D(e, R) in terms of 2-valued lattice homomorphisms, 
rather than the weaker requirement of 2-valued maps that reduce to 2-valued 
homomorphisms on each Boolean sublattice D(e, R), and deriving the 
sublattices Lerter2...er k without any measurement condition. Clifton and I have 

now proved a uniqueness theorem for the sublattices L%~r2... % on the basis 

of the following constraints (Bub and Clifton, n.d.): 

(1) Truth and probability. D(e, R) is an ortholattice admitting sufficiently 
many 2-valued homomorphisms h: D(e, R) --~ {0, 1 } to recover the joint 
probabilities assigned by the state e to mutually compatible sets of elements 
{ai}i~I, ai ~ D(e, R), as measures on a Kolmogorov probability space (X, F, 
Ix), where X is the set of 2-valued homomorphisms on D(e, R) and tx({h: 
h(ai) = 1, for a l l /  ~ I}) = tr(IIa). 

(2) e, R-Definability. For any e and R, D(e, R) is invariant under lattice 
homomorphisms (i.e., unitary and antiunitary transformations) that preserve 
e and R. 

It is understood, of course, that R is determinate, i.e., that the eigenspaces 
ri of R belong to D(e, R). To avoid a problem with 2-dimensional subspaces, 
it is also assumed that if two systems are not 'entangled' by any interaction, 
then each system is characterized by its own determinate sublattice, where 
the determinate sublattice of a system is the restriction of the determinate 
sublattice of the composite system to the component system. With these 
constraints, it can be proved that the maximal determinate sublattices are just 
the sublattices L%~r...erk. 

From the Bub-Clifton result, it follows that, without introducing any 
measurement constraints on the determinate sublattices, we can derive that 
the propositions corresponding to the observable correlated with the pointer 
observable in the 'entangled' state arising from a unitary transformation 
representing a quantum mechanical measurement interaction are determi- 
nately true or false. So we can derive the interpretation of the probabilities 
defined by a quantum state for the eigenvalues of an observable A as 'the 
probabilities of finding the different possible eigenvalues of A in a measure- 
ment of A.' 

The uniqueness theorem characterizes a class of admissible interpreta- 
tions of quantum mechanics. For example, Bohm's hidden-variables theory 
(Bohm, 1952) can be understood as a proposal for implementing an interpreta- 
tion in which the privileged observable R is fixed as position in configuration 
space. With a fixed preferred observable R, which is now stipulated as always 
having a determinate value, the question arises as to the dynamics of 'value 
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states' on the determinate sublattice D(e, R) as the state e evolves in time, i.e., 
states defined by 2-valued homomorphisms on D(e, R). Since the evolution of  
such states is completely determined by the evolution of  e and of  R, we want 
an equation of  motion for the determinate values o f  R that will preserve the 
distribution of  R-values specified by e, as e evolves in time according to 
Schr6dinger 's  t ime-dependent equation o f  motion. It turns out that one possi- 
ble choice for this dynamics reduces to Bohm's  dynamics when R is position 
in configuration space (Bub, 1995). 
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